It was a revelation to me in second year when [one of the top professors] said to me, "Buy a model kit." And so now I tell all my students.
Expert Insights
|
|
Difficulties are having to relearn something that they thought was true from school and not understanding the evolving nature of science. New knowledge is easier to assimilate than changing old knowledge. |
|
I don’t like to be in a position where I’m stood at the front talking for 50 minutes. I like to be a in a position where I’m engaging with students, where they’re engaging with each other, where there’s a buzz, where there’s things happening, and it’s an active environment. |
At the start of every class my standard thing was ‘can you see me, can you hear me, can you see the slide?’ I would always look up the back for someone to put their hand up and always I would never talk to the front row. I’d always talk middle and back row and if someone was talking in the back row I’d pick them up and say ‘hey you, be quiet’ and then they know that I’ve seen them. So you’ve got to focus on the whole class not just the people at the front - the people at the back as well. Because sometimes smart people sit at the back as well, not just the dummies who want to get out. You’ve got to make sure you know everyone in the class. And the surprising thing is that most kids sit in the same place every lecture. So you can actually recognise where they are and who they are. You don’t know their names but there’s a pattern in the way they sit. You’ve just got to be aware of that. So the trick is to embrace the whole class with your - you know physically, just with your eyes and and the way you talk. You know, when you wave your hands, wave it to the back row. Make sure they’re involved. |
|
You're learning a new language as well as new concepts. There's lots of vocab, so terms like electrophile and nucleophile and many others. So learning the language, learning the code that we use, the curly arrow code, and then starting to apply that in half a dozen or a dozen or so different contexts, different reactions. |
I think for a lot of people, before they started chemistry, especially if they haven't done any chemistry before, they've got no real understanding of the difference between macroscopic things and microscopic and atomic sized things. We all know how important that distinction is. |
|
It’s continuous learning. I mean, what I used to try to say to students when I taught the acid-base stuff I’d say ‘look there are only about six types of problems and if you can solve one of them you can solve them all because they’re all the same.’ But what you’ve got to be able to do is look at the question and say to yourself ‘this is one of those types of questions therefore this is the way I should think about approaching it.’ So take the question, dissect it, decide what you’re being asked to do, decide what information you’re given, and then say ‘yeah that’s one of those types of questions, this is the way I should go about solving it.' If you can get that across to them, that it’s not a new universe every time you get a question, it’s simply a repeat universe of the same type of question... But many students tend to look at each problem as a new universe and start from the beginning again. Many students don’t see that there is a limited number of problems that can be asked on a certain topic. |
I think what I try to get students to see is that we use models and you use a model, while it works. Then when it doesn’t work you develop a more sophisticated model, and what we’re doing now is developing a more sophisticated model of the structure of the atom, of bonding between atoms. So they find that difficult, the fact that you’re putting aside the model you used previously and developing a more sophisticated one. I think that’s something, it just knocks their confidence a bit. I think we’ve got to convince them that, actually, what your teachers told you at school wasn't wrong, it’s just that this is more sophisticated, that science is all about building models to explain reality. |
|
I guess what every educator deals with is needing to find out what preconceptions there are at the start of the unit and then correct those and then keep on top of those throughout the course. For example I get students who use the word particle and the word droplet interchangeably. Whereas to an expert, a particle is something that is made of a solid material and a droplet is something that’s a liquid material. Students use those interchangeably so they may be talking about a suspension of solid materials but then they use the word droplet because they think it’s interchangeable with the word particle. Or vice versa, they might be talking about an emulsion and they talk about particles where they should be talking about droplets. So because they’ve heard these phrases before in first year... the importance of using exactly correct terminology hasn’t been reinforced. |
Students from high school might understand that vinegar for example is a weak acid compared to hydrochloric acid, but they never knew why. And you could then show them that with equilibrium, this is why. And all of a sudden they’re, 'oh, I’ve always known that I shouldn’t spill HCL on my hand, but I can spill vinegar on my hand and put it on my fish and chips'... Those sorts of moments can really... the students go ‘oh wow.’ Anonymous |




Unless otherwise noted, content on this site is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License