Ions and ionic chemistry are essential to life and just about everything they will run across.
Expert Insights
|
|
So into the lectures I put kind of ad breaks, I suppose, short 'meet the scientist' breaks. So we would have a photograph and fun facts about a scientist and various places we would have a stop, and I have told them that all of that information wasn't on the exam, so they knew that they could stop and just take a breather and then pick back up on the chemistry afterwards. So that, I think helped, especially the ones that were just finding it all a bit kind of overwhelming. |
|
I know it's hard for them to 'suspend reality' and just accept a concept. They grasp for real life examples or metaphors which make sense to them. Students don't like the concept of something that can shift/change. They like one answer which is set and that's it, right or wrong - not 'shifts to the left/right'. |
[Analytical chemistry] is probably one of the things that’s easiest to tie back to their own experiences. Because it’s very easy to link the idea of the importance of chemical measurement, is actually pretty easy to get across. You just talk about what is sports drug testing, road side testing, when was the last time you went to the doctor to get a path test. These are all forms of analytical chemistry. So I have a significant advantage over some people [teaching other topics] in being able to imbed it in their experiences. Everybody has some kind of experience we can draw on to say, yeah that’s analytical chemistry. The difficulty is of course to ensure that misconceptions don’t creep in. |
|
Difficulties are having to relearn something that they thought was true from school and not understanding the evolving nature of science. New knowledge is easier to assimilate than changing old knowledge. |
And it’s taken me a long time to discover what sort of teacher I actually am.... I had a colleague who said to me, ‘oh you’re a narrative teacher’. I said, ‘I’m a what’? ..... I tell stories, essentially. I tell stories. I turn everything into a story in some way... and again, analytical chemistry lends itself to that. That you can link it to stories that are in the media, personal experiences, my own personal research experience. The student’s own experience. So it’s shared. So while I thought I was a straight forward didactic teacher, you know I just stood there but I’m not, I asked students, ‘alright who’s got experience of this’, and then I use a narrative form to get that across, and it seems to work. |
|
Try to show students that the fundamental form of matter is energy. Then that this can be represented as particles with mass or as waves (wave functions). Then try to show them that we use the model particle/wave that best helps us understand different phenomena. In class I often do this by asking questions about wave mechanics in particle terms. eg. If a 2s orbital has a node how can the electron pass accross it? Then explain to them the limitations and advantages of each approach. |
It is vitally important for their understanding of chemistry that they understand that molecules are three-dimensional things and that they have a spatial requirement in that they have a shape of their own and that shape will change. They can't do higher level manipulations without an understanding of three-dimensional nature of molecules. |
|
Many years ago, lecturers only had one style, you know they just wrote on the blackboard, actual blackboard with chalk. That was the only style. They just talked... That’s all I knew so that was fine and so I thought, well I’ll just continue that and the students weren’t understanding what I was saying and explaining and I thought, oh hang on what’s going on here? This is the way I was taught. Come on, it should work. So, yeah I think it would be good if someone told me that at the start, but as I said because I’d end up doing my Diploma of Education that opened my eyes to that and that’s when I started to utilise different strategies and I appreciate that not everyone is going to understand one way of, my teaching way. |
Students see equations and panic. Students struggle to transfer mathematical knowledge to chemical situations. Students silo knowledge and find it hard to relate concepts to actual systems. |




Unless otherwise noted, content on this site is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License