Difficulties are having to relearn something that they thought was true from school and not understanding the evolving nature of science. New knowledge is easier to assimilate than changing old knowledge.
Expert Insights
|
|
It’s something that needs to be reinforced, it’s not that you taught it in this unit for three weeks, we are over it. It’s something that keeps coming back, and that you can possibly reintroduce it, with not much change to your teaching. Not every single time, but every now and then remind the students, ‘remember, you still have to think about stoichiometry and limiting reagents’. |
|
I remember when I was taught this, that the only definition we were given was Le Chatelier’s actual definition, or his principle, and I remember reading that language and going geez, that’s really hard to follow as a student, so I used to always try and present that and then break it down in to a more simple sort of version that I thought would be easier to understand. |
In the lecture theatre the best strategy there, where you’re confronted by all the constraints of the lecture theatre, is to stop and do stuff with the students, walk around amongst them, see what they’re actually doing... And out of that you might go back and address some aspect of it and revisit it or something like that or you might point them to some tools to use to work out some other aspect. So in the lecture theatre it’s very much for me a case of stopping and going and seeing what they’re doing and if you don’t then clearly you don’t know. |
|
You could identify people and you use it in a constructive way. But if you could show some identity, that you’re not a remote person up the front, that the big class is not anonymous, it just helps to break down that barrier. And once they trust you and once they like coming, that solves a lot of other problems - behavioural problems, learning problems and so on. |
I find that some students pick up what the mole concept is from the idea of grouping numbers of things that are every day size. |
|
They struggle with the language of chemistry. So we sort of need to teach them the process and how to work out how to do these things. We know that their tendency is just to attempt to memorise reactions. Whereas if we can teach them to derive … find out what the nucleophile and the electrophile is then all they have to do is draw a curly arrow from the nucleophile to the electrophile, rather than trying to work out what the reaction is itself. |
We do an awful lot of focus on teaching but realisticly, authentic assessment that actually engages the student, that’s a tougher ask... I set a lot of essay type assignments. I think we ought to do more of that in science. But when I started doing this I used to get very poor results and it’s taken me a little while to realise that the students weren’t understanding what the questions was. They didn’t understand what I meant by compare and contrast or discuss or argue for this. So increasingly now I use workshops to actually spend time with the students unpacking, what is this essay assignment about? What am I actually asking you to do? What do you need to think about? And not assuming that they know how to write an essay. |
|
I changed my method of teaching to be a team-based learning approach where in fact as teams they are responsible to each other within the team for their level of engagement or for what they put into that team and if they don’t put in what the team thinks is useful then they get marked on that, their peers mark them on how much they’re contributing to the team’s goals. So rather than me as the educator saying you need to do this and you need to do that, in fact the system is such that as a team they’re responsible for a certain outcome and the team must achieve that outcome and so they need to work together. For the students who don’t put in as much as the team expects of them then there is peer pressure to increase their level of input and their engagement and if the students don’t then the team members get a chance to reflect upon that and give them a sort of team work score. |
I think what I try to get students to see is that we use models and you use a model, while it works. Then when it doesn’t work you develop a more sophisticated model, and what we’re doing now is developing a more sophisticated model of the structure of the atom, of bonding between atoms. So they find that difficult, the fact that you’re putting aside the model you used previously and developing a more sophisticated one. I think that’s something, it just knocks their confidence a bit. I think we’ve got to convince them that, actually, what your teachers told you at school wasn't wrong, it’s just that this is more sophisticated, that science is all about building models to explain reality. |




Unless otherwise noted, content on this site is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License