Expert Insights

The actual curly arrow mechanisms are in a way themselves cartoons, how they map to the reality in the way that a Micky Mouse might map to real life.

But if you’re honest, they’ll be honest right.  And I think that’s really important. If you b*gger something up and you really do make a blue or even a little blue, tell them.  Say ‘oh look this was wrong, you know this is what it should be’.  So that’s important - to be honest, to be upfront.  Recognise that we’re dealing, in 2015 or 2014, we’re dealing with OP1 to maybe 14. Recognise the breadth of that class. Don’t teach the top, don’t teach the bottom, teach somewhere in the middle, but try to make sure that you don’t lose the top ones and lose the bottom ones, which is very difficult to do and you only do it with experience.

And it’s taken me a long time to discover what sort of teacher I actually am.... I had a colleague who said to me, ‘oh you’re a narrative teacher’.  I said, ‘I’m a what’? ..... I tell stories, essentially.  I tell stories.  I turn everything into a story in some way... and again, analytical chemistry lends itself to that.  That you can link it to stories that are in the media, personal experiences, my own personal research experience.  The student’s own experience.  So it’s shared.  So while I thought I was a straight forward didactic teacher, you know I just stood there but I’m not, I asked students, ‘alright who’s got experience of this’, and then I use a narrative form to get that across, and it seems to work.

I think for a lot of people, before they started chemistry, especially if they haven't done any chemistry before, they've got no real understanding of the difference between macroscopic things and microscopic and atomic sized things. We all know how important that distinction is.

They [students] expect to either succeed or fail immediately or very quickly on particular problems. They do not see the process as a learning process.

You could identify people and you use it in a constructive way.  But if you could show some identity, that you’re not a remote person up the front, that the big class is not anonymous, it just helps to break down that barrier.  And once they trust you and once they like coming, that solves a lot of other problems - behavioural problems, learning problems and so on.

I want them to get the big picture about what analytical chemistry is about in terms of solving an analytical chemistry problem.  They need to know the big picture rather than just focussing on the measurement step.

So, just to make them do some work, and made them think about the ideas themselves.  Talk amongst themselves about it.  I think that just too much of me in the lecture just washes over them after five to 10 minutes.  So they just need to have a break, think about the problem, do a couple of problems, talk amongst themselves... that seems to help, with both the variety of students in the class, but also just keeping them engaged.  Keeping their attention.

Students from high school might understand that vinegar for example is a weak acid compared to hydrochloric acid, but they never knew why. And you could then show them that with equilibrium, this is why. And all of a sudden they’re, 'oh, I’ve always known that I shouldn’t spill HCL on my hand, but I can spill vinegar on my hand and put it on my fish and chips'... Those sorts of moments can really... the students go ‘oh wow.’

Anonymous

Chemistry is a different language so I try to approach it that way by explaining the ideas behind symbols.

Pages