And it’s so essential, if you are in the middle of a discipline, to have a really well developed sense of what your colleagues around you are teaching, so that you can make connections.
Expert Insights
|
|
So into the lectures I put kind of ad breaks, I suppose, short 'meet the scientist' breaks. So we would have a photograph and fun facts about a scientist and various places we would have a stop, and I have told them that all of that information wasn't on the exam, so they knew that they could stop and just take a breather and then pick back up on the chemistry afterwards. So that, I think helped, especially the ones that were just finding it all a bit kind of overwhelming. |
|
It’s something that needs to be reinforced, it’s not that you taught it in this unit for three weeks, we are over it. It’s something that keeps coming back, and that you can possibly reintroduce it, with not much change to your teaching. Not every single time, but every now and then remind the students, ‘remember, you still have to think about stoichiometry and limiting reagents’. |
The big picture is that in any topic there’re key principles, and if you as a lecturer can get across the key principles, that then sets them up to solve problems and to think about the other principles and how they connect. But if they don’t, if they’re not prepared to accept the fact that there are these key principles you need to understand then it’s not going to work. |
|
I guess what every educator deals with is needing to find out what preconceptions there are at the start of the unit and then correct those and then keep on top of those throughout the course. For example I get students who use the word particle and the word droplet interchangeably. Whereas to an expert, a particle is something that is made of a solid material and a droplet is something that’s a liquid material. Students use those interchangeably so they may be talking about a suspension of solid materials but then they use the word droplet because they think it’s interchangeable with the word particle. Or vice versa, they might be talking about an emulsion and they talk about particles where they should be talking about droplets. So because they’ve heard these phrases before in first year... the importance of using exactly correct terminology hasn’t been reinforced. |
The actual curly arrow mechanisms are in a way themselves cartoons, how they map to the reality in the way that a Micky Mouse might map to real life. |
|
I want them to get the big picture about what analytical chemistry is about in terms of solving an analytical chemistry problem. They need to know the big picture rather than just focussing on the measurement step. |
The concept of a continuum is, I think, really important in chemistry and… what I see is that students come up with this issue of things being black or white. They struggle with this concept of the in between stuff. |
|
I find it [teaching] enjoyable, and I think that if you’re enjoying teaching something then your passion and desire and enjoyment gets transmitted to the students. It’s not necessarily easy to teach, but it’s satisfying and generally we want to inspire them to increase their level of intrinsic motivation to want to continue to study chemistry. |
They struggle with the language of chemistry. So we sort of need to teach them the process and how to work out how to do these things. We know that their tendency is just to attempt to memorise reactions. Whereas if we can teach them to derive … find out what the nucleophile and the electrophile is then all they have to do is draw a curly arrow from the nucleophile to the electrophile, rather than trying to work out what the reaction is itself. |




Unless otherwise noted, content on this site is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License