In the lab it comes out in a variety of ways. It comes out most commonly when the student gets to actually start doing their calculations and you ask them to relate that back to what they’ve actually physically measured. And when they start doing those sorts of things you realise there’s a bit of a misplaced idea here or a misconception that you can deal with there.
Expert Insights
|
|
So the strategy is to reflect, to change things, to be flexible, to talk to them but not talk down to them, and certainly I would say to any young lecturer don’t be writing the lecture the night before. Know what your course is because then you can jump back and forth as you talk about something. You can say yeah we talked about this a week ago or something like that, you know. Know what you’re going to talk about, the whole thing, because then you can put it all together as a package. |
|
I remember when I was taught this, that the only definition we were given was Le Chatelier’s actual definition, or his principle, and I remember reading that language and going geez, that’s really hard to follow as a student, so I used to always try and present that and then break it down in to a more simple sort of version that I thought would be easier to understand. |
So my approach to teaching is that I want students to be actively engaged with the material throughout the lectures, all the tutorials, all the workshops or whatever, and so I’m not giving didactic lectures, I’m not using lots of PowerPoint slides. I’m giving them information. I’m describing things to them, but then I give them lots of examples and lots of things to do, lots of activities to do. |
|
Students should [only] be limited by students' curiosity. |
I think it’s a key teaching topic, also because it’s teaching students to look at data and to interpret data, to assess which part of that data is going to get them to the answer and which part is exquisite detail that they can come back to later on. |
|
In the workshops, the workshop idea as we run them is that you are out and about and amongst the students all the time in those groups, seeing what’s going on in the groups, seeing how they’re answering their questions. They have set questions on sheets that they work through in groups and the groups of three just get one set. They’re all working on them together and you’re moving in and out and around among the groups and seeing how they’re going. In that circumstance you can quickly, having looked at three or four of your eight different groups, figure out where a particular issue would be and then that can be addressed on the board, it can be addressed with models or something like that. |
I like to approach chemistry as a different language, because it used symbols to convey ideas across, but they are not the reality. When we draw a little stick structure, alcohol does not exist as I’ve just drawn it, it’s a representation. |
|
It is vitally important for their understanding of chemistry that they understand that molecules are three-dimensional things and that they have a spatial requirement in that they have a shape of their own and that shape will change. They can't do higher level manipulations without an understanding of three-dimensional nature of molecules. |
Students from high school might understand that vinegar for example is a weak acid compared to hydrochloric acid, but they never knew why. And you could then show them that with equilibrium, this is why. And all of a sudden they’re, 'oh, I’ve always known that I shouldn’t spill HCL on my hand, but I can spill vinegar on my hand and put it on my fish and chips'... Those sorts of moments can really... the students go ‘oh wow.’ Anonymous |




Unless otherwise noted, content on this site is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License