Expert Insights

We teach way too much stuff.  We teach way too much stuff that we used to teach because students didn’t have the resources available to them that they’ve got now.  I mean if you look at the resources - they’ve got textbooks, they’ve got electronic media, they’ve got Sapling. They can do the problems in their own time in a guided way with something like Sapling. We don’t have to do it, all we’ve got to do is give them the framework to solve the problems.  And I think we often misunderstand how much we should give them because I think we underestimate the value of letting them solve problems in a guided way with things like Sapling.  And I think, you know, in the old days we’d just do problem after problem after problem, which is as boring as anything.

They [students] reveal great misunderstandings about the molecular world. So the difficulties and limitations are as a result of not spending sufficient time on getting them to think about this world, and spending too much time on doing. You know, we’ve got to spend some time, but you can’t spend too much time, I think, on a lot of the ideas that we do teach, and doing calculations and things that, really, no one else does. It’s really something that’s done almost like it’s make-work-type stuff.

Students should [only] be limited by students' curiosity.

I think for a lot of people, before they started chemistry, especially if they haven't done any chemistry before, they've got no real understanding of the difference between macroscopic things and microscopic and atomic sized things. We all know how important that distinction is.

In the workshops, the workshop idea as we run them is that you are out and about and amongst the students all the time in those groups, seeing what’s going on in the groups, seeing how they’re answering their questions.  They have set questions on sheets that they work through in groups and the groups of three just get one set.  They’re all working on them together and you’re moving in and out and around among the groups and seeing how they’re going.  In that circumstance you can quickly, having looked at three or four of your eight different groups, figure out where a particular issue would be and then that can be addressed on the board, it can be addressed with models or something like that.

It now does come down to the quality of the presentation in terms of what you put on the PowerPoint I suppose, cos we all use PowerPoint.  But I try most lectures to switch that off and use the visualiser and write things down by hand, where I can see that something is missing on the PowerPoint, or if I think the students haven’t got a particular message, don’t understand a reaction, don’t know about a mechanism. I’m happy to stop, go to the visualiser and write it down at the correct sort of pace, by which they can actually write it down themselves.

It is vitally important for their understanding of chemistry that they understand that molecules are three-dimensional things and that they have a spatial requirement in that they have a shape of their own and that shape will change.  They can't do higher level manipulations without an understanding of three-dimensional nature of molecules.

The big picture is that in any topic there’re key principles, and if you as a lecturer can get across the key principles, that then sets them up to solve problems and to think about the other principles and how they connect.  But if they don’t, if they’re not prepared to accept the fact that there are these key principles you need to understand then it’s not going to work.

I think personally the quicker the students can see that holistic approach to chemistry the better... Because that’s when they start to realise how cool it is.

You could identify people and you use it in a constructive way.  But if you could show some identity, that you’re not a remote person up the front, that the big class is not anonymous, it just helps to break down that barrier.  And once they trust you and once they like coming, that solves a lot of other problems - behavioural problems, learning problems and so on.

Pages