Expert Insights

Difficulties are having to relearn something that they thought was true from school and not understanding the evolving nature of science. New knowledge is easier to assimilate than changing old knowledge.

It’s something that needs to be reinforced, it’s not that you taught it in this unit for three weeks, we are over it. It’s something that keeps coming back, and that you can possibly reintroduce it, with not much change to your teaching. Not every single time, but every now and then remind the students, ‘remember, you still have to think about stoichiometry and limiting reagents’.

You're learning a new language as well as new concepts. There's lots of vocab, so terms like electrophile and nucleophile and many others. So learning the language, learning the code that we use, the curly arrow code, and then starting to apply that in half a dozen or a dozen or so different contexts, different reactions.

And it’s so essential, if you are in the middle of a discipline, to have a really well developed sense of what your colleagues around you are teaching, so that you can make connections.

This understanding builds students' knowledge about the basic structure of matter which stimulates them to think in sub-microscopic level that provides the fundamental understanding for further chemistry learning.

So into the lectures I put kind of ad breaks, I suppose, short 'meet the scientist' breaks.  So we would have a photograph and fun facts about a scientist and various places we would have a stop, and I have told them that all of that information wasn't on the exam, so they knew that they could stop and just take a breather and then pick back up on the chemistry afterwards.  So that, I think helped, especially the ones that were just finding it all a bit kind of overwhelming. 

They struggle with the language of chemistry.  So we sort of need to teach them the process and how to work out how to do these things.  We know that their tendency is just to attempt to memorise reactions.  Whereas if we can teach them to derive … find out what the nucleophile and the electrophile is then all they have to do is draw a curly arrow from the nucleophile to the electrophile, rather than trying to work out what the reaction is itself. 

They [students] reveal great misunderstandings about the molecular world. So the difficulties and limitations are as a result of not spending sufficient time on getting them to think about this world, and spending too much time on doing. You know, we’ve got to spend some time, but you can’t spend too much time, I think, on a lot of the ideas that we do teach, and doing calculations and things that, really, no one else does. It’s really something that’s done almost like it’s make-work-type stuff.

Try to show students that the fundamental form of matter is energy. Then that this can be represented as particles with mass or as waves (wave functions). Then try to show them that we use the model particle/wave that best helps us understand different phenomena. In class I often do this by asking questions about wave mechanics in particle terms. eg. If a 2s orbital has a node how can the electron pass accross it? Then explain to them the limitations and advantages of each approach.

It was a revelation to me in second year when [one of the top professors] said to me, "Buy a model kit." And so now I tell all my students.

Pages