Expert Insights

It is vitally important for their understanding of chemistry that they understand that molecules are three-dimensional things and that they have a spatial requirement in that they have a shape of their own and that shape will change.  They can't do higher level manipulations without an understanding of three-dimensional nature of molecules.

I guess what every educator deals with is needing to find out what preconceptions there are at the start of the unit and then correct those and then keep on top of those throughout the course.  For example I get students who use the word particle and the word droplet interchangeably. Whereas to an expert, a particle is something that is made of a solid material and a droplet is something that’s a liquid material.  Students use those interchangeably so they may be talking about a suspension of solid materials but then they use the word droplet because they think it’s interchangeable with the word particle. Or vice versa, they might be talking about an emulsion and they talk about particles where they should be talking about droplets.  So because they’ve heard these phrases before in first year... the importance of using exactly correct terminology hasn’t been reinforced.

So into the lectures I put kind of ad breaks, I suppose, short 'meet the scientist' breaks.  So we would have a photograph and fun facts about a scientist and various places we would have a stop, and I have told them that all of that information wasn't on the exam, so they knew that they could stop and just take a breather and then pick back up on the chemistry afterwards.  So that, I think helped, especially the ones that were just finding it all a bit kind of overwhelming. 

In the lecture theatre the best strategy there, where you’re confronted by all the constraints of the lecture theatre, is to stop and do stuff with the students, walk around amongst them, see what they’re actually doing... And out of that you might go back and address some aspect of it and revisit it or something like that or you might point them to some tools to use to work out some other aspect.  So in the lecture theatre it’s very much for me a case of stopping and going and seeing what they’re doing and if you don’t then clearly you don’t know. 

I think it’s a key teaching topic, also because it’s teaching students to look at data and to interpret data, to assess which part of that data is going to get them to the answer and which part is exquisite detail that they can come back to later on. 

They [students] expect to either succeed or fail immediately or very quickly on particular problems. They do not see the process as a learning process.

It always seems like we're starting from further behind than a lot of the other sciences are because they seem to know less about chemistry when they get here.  If I say ‘think of a famous physicist’ you probably already have thought of three.  Then you could go outside and ask someone to think of a famous physicist and they'd probably think of at least one of the same ones.  You do the same thing with biologists.  If I say to think of a famous chemist … that's within chemistry circles, we can't do it.  We can name one but you know if you go out there and say, ‘Who is this person?’ they've got no idea.  So for some reason … we've never … chemists have never been able to popularise our topic, our content.  We've never been able to make it exciting enough that someone who is not studying it still wants to know about it.  And so I do think we've got a bigger challenge, for whatever reason.  Maybe there's something about chemistry that makes it less enjoyable, I don’t know.  There's definitely been an ongoing issue for us that it's not … people just don't know anything about it... Most people know Einstein's theory of relativity.  You don't see that really in everyday, go, "There's the theory of relativity at work." Newton's Law, sure, you see those and you … but, yeah, everybody knows Einstein.  And a lot of … I'll call them lay people, I don't like the term, but non-science people, could probably give you a hand wave explanation of what the theory of relativity is about, which is a pretty abstract thing.  I mean, if we think of the equivalent types of things in chemistry that are that abstract, nobody has a clue.  We teach them in third year to the remaining hard core people that are left. 

You could identify people and you use it in a constructive way.  But if you could show some identity, that you’re not a remote person up the front, that the big class is not anonymous, it just helps to break down that barrier.  And once they trust you and once they like coming, that solves a lot of other problems - behavioural problems, learning problems and so on.

I started lecturing before I did my Diploma of Education and I would have recommended to all of the lecturers to do it because it really helped me in my teaching.  Mind you, I already had a bit of experience, I don’t know, you know, the chicken or the egg type thing.

I changed my method of teaching to be a team-based learning approach where in fact as teams they are responsible to each other within the team for their level of engagement or for what they put into that team and if they don’t put in what the team thinks is useful then they get marked on that, their peers mark them on how much they’re contributing to the team’s goals.  So rather than me as the educator saying you need to do this and you need to do that, in fact the system is such that as a team they’re responsible for a certain outcome and the team must achieve that outcome and so they need to work together.  For the students who don’t put in as much as the team expects of them then there is peer pressure to increase their level of input and their engagement and if the students don’t then the team members get a chance to reflect upon that and give them a sort of team work score.

Pages