Too often I think students and others think that analytical chemistry is just that measurement step. When you use the AA, when you use the ... and doesn’t take into account, well all of the other stuff, what’s the actual problem you’re trying to solve? What are you actually trying to do, sampling, measurement, validating your results? Because only then when you’ve got a result, only then does it actually become information.
Expert Insights
|
|
I think to get the students to straight away mark for somebody else what they’ve just done and then to mark or take part in the marking of two other versions of the same thing is really powerful. So it’s not so much me directly finding out what they do and don’t understand but using methods by which they can diagnose for themselves. I haven’t got this, she has, or yep I have got most of that, she hasn’t, and I can see where she went wrong. Very powerful, very powerful indeed. |
|
So you shouldn’t be rigid, you shouldn’t be rigid in what you’re going to do. It’s always stunned me that people say you should know where you start a lecture and where you’re going to finish, and if you get to that point and you finish ten minutes early you then should just finish. I’ve never worked on that principle. I never know where I’m going to start because I never know where I’m going to finish, right. So where I finished the lecture before is where I start the next day, I haven’t got a set content. If a student asks me an interesting question and I get the feeling that they want to know that answer I’ll go off for five or ten minutes or three or four minutes answering it, and if I don’t get to the end of where I thought I was going to get to, too bad I’ll do it next time. So you go with the flow, you don’t go with a rigid thing ‘I’ve got to get through these 15 slides today and if I don’t the world will end,’ because it won’t. |
It is vitally important for their understanding of chemistry that they understand that molecules are three-dimensional things and that they have a spatial requirement in that they have a shape of their own and that shape will change. They can't do higher level manipulations without an understanding of three-dimensional nature of molecules. |
|
Difficulties are having to relearn something that they thought was true from school and not understanding the evolving nature of science. New knowledge is easier to assimilate than changing old knowledge. |
So, just to make them do some work, and made them think about the ideas themselves. Talk amongst themselves about it. I think that just too much of me in the lecture just washes over them after five to 10 minutes. So they just need to have a break, think about the problem, do a couple of problems, talk amongst themselves... that seems to help, with both the variety of students in the class, but also just keeping them engaged. Keeping their attention. |
|
So into the lectures I put kind of ad breaks, I suppose, short 'meet the scientist' breaks. So we would have a photograph and fun facts about a scientist and various places we would have a stop, and I have told them that all of that information wasn't on the exam, so they knew that they could stop and just take a breather and then pick back up on the chemistry afterwards. So that, I think helped, especially the ones that were just finding it all a bit kind of overwhelming. |
In the lecture theatre the best strategy there, where you’re confronted by all the constraints of the lecture theatre, is to stop and do stuff with the students, walk around amongst them, see what they’re actually doing... And out of that you might go back and address some aspect of it and revisit it or something like that or you might point them to some tools to use to work out some other aspect. So in the lecture theatre it’s very much for me a case of stopping and going and seeing what they’re doing and if you don’t then clearly you don’t know. |
|
I guess what every educator deals with is needing to find out what preconceptions there are at the start of the unit and then correct those and then keep on top of those throughout the course. For example I get students who use the word particle and the word droplet interchangeably. Whereas to an expert, a particle is something that is made of a solid material and a droplet is something that’s a liquid material. Students use those interchangeably so they may be talking about a suspension of solid materials but then they use the word droplet because they think it’s interchangeable with the word particle. Or vice versa, they might be talking about an emulsion and they talk about particles where they should be talking about droplets. So because they’ve heard these phrases before in first year... the importance of using exactly correct terminology hasn’t been reinforced. |
I want them to get the big picture about what analytical chemistry is about in terms of solving an analytical chemistry problem. They need to know the big picture rather than just focussing on the measurement step. |




Unless otherwise noted, content on this site is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License