Expert Insights

The actual curly arrow mechanisms are in a way themselves cartoons, how they map to the reality in the way that a Micky Mouse might map to real life.

It is vitally important for their understanding of chemistry that they understand that molecules are three-dimensional things and that they have a spatial requirement in that they have a shape of their own and that shape will change.  They can't do higher level manipulations without an understanding of three-dimensional nature of molecules.

And it’s taken me a long time to discover what sort of teacher I actually am.... I had a colleague who said to me, ‘oh you’re a narrative teacher’.  I said, ‘I’m a what’? ..... I tell stories, essentially.  I tell stories.  I turn everything into a story in some way... and again, analytical chemistry lends itself to that.  That you can link it to stories that are in the media, personal experiences, my own personal research experience.  The student’s own experience.  So it’s shared.  So while I thought I was a straight forward didactic teacher, you know I just stood there but I’m not, I asked students, ‘alright who’s got experience of this’, and then I use a narrative form to get that across, and it seems to work.

I know it's hard for them to 'suspend reality' and just accept a concept. They grasp for real life examples or metaphors which make sense to them. Students don't like the concept of something that can shift/change. They like one answer which is set and that's it, right or wrong - not 'shifts to the left/right'.

So, just to make them do some work, and made them think about the ideas themselves.  Talk amongst themselves about it.  I think that just too much of me in the lecture just washes over them after five to 10 minutes.  So they just need to have a break, think about the problem, do a couple of problems, talk amongst themselves... that seems to help, with both the variety of students in the class, but also just keeping them engaged.  Keeping their attention.

A lot of it is from colleagues.  Conferences are fantastic.  You know, your chemical education conferences.  I do go to a lot of those.

Difficulties are having to relearn something that they thought was true from school and not understanding the evolving nature of science. New knowledge is easier to assimilate than changing old knowledge.

I think it’s a key teaching topic, also because it’s teaching students to look at data and to interpret data, to assess which part of that data is going to get them to the answer and which part is exquisite detail that they can come back to later on. 

The concept of a continuum is, I think, really important in chemistry and… what I see is that students come up with this issue of things being black or white.  They struggle with this concept of the in between stuff.

It’s something that needs to be reinforced, it’s not that you taught it in this unit for three weeks, we are over it. It’s something that keeps coming back, and that you can possibly reintroduce it, with not much change to your teaching. Not every single time, but every now and then remind the students, ‘remember, you still have to think about stoichiometry and limiting reagents’.

Pages