Expert Insights

So, it’s helping to bed down analysis, problem solving, doing the sort of detective work to get to an answer.  And the students also seem to quite enjoy having material presented to them in that way - here’s a spectrum, what do you think the structure is, because it’s a more active form of learning as well.  So I find I enjoy teaching it, and they respond well in terms of, they keep coming in and asking me for additional problems to practise on which is clearly evidence that they feel it’s challenging them.

The concept of a continuum is, I think, really important in chemistry and… what I see is that students come up with this issue of things being black or white.  They struggle with this concept of the in between stuff.

Many years ago, lecturers only had one style, you know they just wrote on the blackboard, actual blackboard with chalk.  That was the only style.  They just talked... That’s all I knew so that was fine and so I thought, well I’ll just continue that and the students weren’t understanding what I was saying and explaining and I thought, oh hang on what’s going on here?  This is the way I was taught.  Come on, it should work.  So, yeah I think it would be good if someone told me that at the start, but as I said because I’d end up doing my Diploma of Education that opened my eyes to that and that’s when I started to utilise different strategies and I appreciate that not everyone is going to understand one way of, my teaching way.

Chemistry is a different language so I try to approach it that way by explaining the ideas behind symbols.

Too often I think students and others think that analytical chemistry is just that measurement step.  When you use the AA, when you use the ... and doesn’t take into account, well all of the other stuff, what’s the actual problem you’re trying to solve?  What are you actually trying to do, sampling, measurement, validating your results? Because only then when you’ve got a result, only then does it actually become information.

I guess what every educator deals with is needing to find out what preconceptions there are at the start of the unit and then correct those and then keep on top of those throughout the course.  For example I get students who use the word particle and the word droplet interchangeably. Whereas to an expert, a particle is something that is made of a solid material and a droplet is something that’s a liquid material.  Students use those interchangeably so they may be talking about a suspension of solid materials but then they use the word droplet because they think it’s interchangeable with the word particle. Or vice versa, they might be talking about an emulsion and they talk about particles where they should be talking about droplets.  So because they’ve heard these phrases before in first year... the importance of using exactly correct terminology hasn’t been reinforced.

So you shouldn’t be rigid, you shouldn’t be rigid in what you’re going to do.  It’s always stunned me that people say you should know where you start a lecture and where you’re going to finish, and if you get to that point and you finish ten minutes early you then should just finish.  I’ve never worked on that principle.  I never know where I’m going to start because I never know where I’m going to finish, right.  So where I finished the lecture before is where I start the next day, I haven’t got a set content.  If a student asks me an interesting question and I get the feeling that they want to know that answer I’ll go off for five or ten minutes or three or four minutes answering it, and if I don’t get to the end of where I thought I was going to get to, too bad I’ll do it next time.  So you go with the flow, you don’t go with a rigid thing ‘I’ve got to get through these 15 slides today and if I don’t the world will end,’ because it won’t.

I have one slide where I'm first demonstrating how we use curly arrows and that shows an arrow going in a particular direction from a nucleophile to an electrophile and emphasising that the arrow shows electrons moving - so it's got to start from where they are.  There has to be some electrons there for them to move.  So the whole screen goes black and comes up with a little orange box of 'never do this' which is an arrow starting from an H+, which has no electrons. The dramatic emphasis that the whole room goes dark and then it's just up there.

I think it’s really important that people mark assessments.  Mark, and see what the students actually end up knowing.  Because they can pretend to themselves that students have understood everything, but if they actually have to mark the exam papers, or the quizzes, or whatever it is, they actually are confronted with the students actual knowledge.  I think that’s really influential.  The second semester of teaching, when you think you’ve explained things well, and then 90% of the class have not got it, then it’s not the students fault at that point, it’s probably your fault.  So I think that assessment is really important.  Not only for the students, but also for the marker.  I think you can learn a lot from marking.

But if you’re honest, they’ll be honest right.  And I think that’s really important. If you b*gger something up and you really do make a blue or even a little blue, tell them.  Say ‘oh look this was wrong, you know this is what it should be’.  So that’s important - to be honest, to be upfront.  Recognise that we’re dealing, in 2015 or 2014, we’re dealing with OP1 to maybe 14. Recognise the breadth of that class. Don’t teach the top, don’t teach the bottom, teach somewhere in the middle, but try to make sure that you don’t lose the top ones and lose the bottom ones, which is very difficult to do and you only do it with experience.

Pages