We all spend a certain amount of our class time going through definitions and jargon and getting students up to speed with the basic area and now that’s material which I take out of the class and put online and let students read and understand that in their own time before they come to the class.
Expert Insights
|
|
So, just to make them do some work, and made them think about the ideas themselves. Talk amongst themselves about it. I think that just too much of me in the lecture just washes over them after five to 10 minutes. So they just need to have a break, think about the problem, do a couple of problems, talk amongst themselves... that seems to help, with both the variety of students in the class, but also just keeping them engaged. Keeping their attention. |
|
It always seems like we're starting from further behind than a lot of the other sciences are because they seem to know less about chemistry when they get here. If I say ‘think of a famous physicist’ you probably already have thought of three. Then you could go outside and ask someone to think of a famous physicist and they'd probably think of at least one of the same ones. You do the same thing with biologists. If I say to think of a famous chemist … that's within chemistry circles, we can't do it. We can name one but you know if you go out there and say, ‘Who is this person?’ they've got no idea. So for some reason … we've never … chemists have never been able to popularise our topic, our content. We've never been able to make it exciting enough that someone who is not studying it still wants to know about it. And so I do think we've got a bigger challenge, for whatever reason. Maybe there's something about chemistry that makes it less enjoyable, I don’t know. There's definitely been an ongoing issue for us that it's not … people just don't know anything about it... Most people know Einstein's theory of relativity. You don't see that really in everyday, go, "There's the theory of relativity at work." Newton's Law, sure, you see those and you … but, yeah, everybody knows Einstein. And a lot of … I'll call them lay people, I don't like the term, but non-science people, could probably give you a hand wave explanation of what the theory of relativity is about, which is a pretty abstract thing. I mean, if we think of the equivalent types of things in chemistry that are that abstract, nobody has a clue. We teach them in third year to the remaining hard core people that are left. |
I find it [teaching] enjoyable, and I think that if you’re enjoying teaching something then your passion and desire and enjoyment gets transmitted to the students. It’s not necessarily easy to teach, but it’s satisfying and generally we want to inspire them to increase their level of intrinsic motivation to want to continue to study chemistry. |
|
It’s something that needs to be reinforced, it’s not that you taught it in this unit for three weeks, we are over it. It’s something that keeps coming back, and that you can possibly reintroduce it, with not much change to your teaching. Not every single time, but every now and then remind the students, ‘remember, you still have to think about stoichiometry and limiting reagents’. |
Too often I think students and others think that analytical chemistry is just that measurement step. When you use the AA, when you use the ... and doesn’t take into account, well all of the other stuff, what’s the actual problem you’re trying to solve? What are you actually trying to do, sampling, measurement, validating your results? Because only then when you’ve got a result, only then does it actually become information. |
|
I remember when I was taught this, that the only definition we were given was Le Chatelier’s actual definition, or his principle, and I remember reading that language and going geez, that’s really hard to follow as a student, so I used to always try and present that and then break it down in to a more simple sort of version that I thought would be easier to understand. |
In the workshops, the workshop idea as we run them is that you are out and about and amongst the students all the time in those groups, seeing what’s going on in the groups, seeing how they’re answering their questions. They have set questions on sheets that they work through in groups and the groups of three just get one set. They’re all working on them together and you’re moving in and out and around among the groups and seeing how they’re going. In that circumstance you can quickly, having looked at three or four of your eight different groups, figure out where a particular issue would be and then that can be addressed on the board, it can be addressed with models or something like that. |
|
I find that some students pick up what the mole concept is from the idea of grouping numbers of things that are every day size. |
So my approach to teaching is that I want students to be actively engaged with the material throughout the lectures, all the tutorials, all the workshops or whatever, and so I’m not giving didactic lectures, I’m not using lots of PowerPoint slides. I’m giving them information. I’m describing things to them, but then I give them lots of examples and lots of things to do, lots of activities to do. |




Unless otherwise noted, content on this site is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License