Expert Insights

This understanding builds students' knowledge about the basic structure of matter which stimulates them to think in sub-microscopic level that provides the fundamental understanding for further chemistry learning.

I find it [teaching] enjoyable, and I think that if you’re enjoying teaching something then your passion and desire and enjoyment gets transmitted to the students.  It’s not necessarily easy to teach, but it’s satisfying and generally we want to inspire them to increase their level of intrinsic motivation to want to continue to study chemistry.

So, just to make them do some work, and made them think about the ideas themselves.  Talk amongst themselves about it.  I think that just too much of me in the lecture just washes over them after five to 10 minutes.  So they just need to have a break, think about the problem, do a couple of problems, talk amongst themselves... that seems to help, with both the variety of students in the class, but also just keeping them engaged.  Keeping their attention.

And it’s taken me a long time to discover what sort of teacher I actually am.... I had a colleague who said to me, ‘oh you’re a narrative teacher’.  I said, ‘I’m a what’? ..... I tell stories, essentially.  I tell stories.  I turn everything into a story in some way... and again, analytical chemistry lends itself to that.  That you can link it to stories that are in the media, personal experiences, my own personal research experience.  The student’s own experience.  So it’s shared.  So while I thought I was a straight forward didactic teacher, you know I just stood there but I’m not, I asked students, ‘alright who’s got experience of this’, and then I use a narrative form to get that across, and it seems to work.

Chemistry is a different language so I try to approach it that way by explaining the ideas behind symbols.

So the first thing that I really stress that people do, is that they actually go and watch some classes.  I think that’s the most important thing.  When they’re coming straight out of a post doc, or they’re coming straight out of the Research Centre, and then, they’re told they’re going to be lecturing 300 first year students, they’ve got to go and sit in the back of the lecture theatres for a few weeks.... when I came over from the UK to here, and the class sizes are about three or four times as big, it was just a real help to be able to see what worked and didn’t work  – how little time the students were on task in quite a few lectures.  Where the lecturer would just be talking and be oblivious to this.  I think people just learn a lot by seeing good things, but they also learn a lot by seeing quite bad things going on.

I think we’ve all sat in lectures and gone, that was dreadful, so we learned quite a lot from understanding how not to do it as well as how actually to do it.  And of course the key is preparation and organisation..... whenever I go into a class knowing that I am beautifully organised, that gives you that extra confidence to project and to present, and you come away with that feeling that you know that the class has gone well and you’ve got the information across to the students in the way that you wanted. 

Students from high school might understand that vinegar for example is a weak acid compared to hydrochloric acid, but they never knew why. And you could then show them that with equilibrium, this is why. And all of a sudden they’re, 'oh, I’ve always known that I shouldn’t spill HCL on my hand, but I can spill vinegar on my hand and put it on my fish and chips'... Those sorts of moments can really... the students go ‘oh wow.’

Anonymous

It’s continuous learning.  I mean, what I used to try to say to students when I taught the acid-base stuff I’d say ‘look there are only about six types of problems and if you can solve one of them you can solve them all because they’re all the same.’ But what you’ve got to be able to do is look at the question and say to yourself ‘this is one of those types of questions therefore this is the way I should think about approaching it.’  So take the question, dissect it, decide what you’re being asked to do, decide what information you’re given, and then say ‘yeah that’s one of those types of questions, this is the way I should go about solving it.'  If you can get that across to them, that it’s not a new universe every time you get a question, it’s simply a repeat universe of the same type of question... But many students tend to look at each problem as a new universe and start from the beginning again.  Many students don’t see that there is a limited number of problems that can be asked on a certain topic.

So the strategy is to reflect, to change things, to be flexible, to talk to them but not talk down to them, and certainly I would say to any young lecturer don’t be writing the lecture the night before. Know what your course is because then you can jump back and forth as you talk about something.  You can say yeah we talked about this a week ago or something like that, you know. Know what you’re going to talk about, the whole thing, because then you can put it all together as a package.

Pages