It was a revelation to me in second year when [one of the top professors] said to me, "Buy a model kit." And so now I tell all my students.
Expert Insights
|
|
Chemistry is a different language so I try to approach it that way by explaining the ideas behind symbols. |
|
Students see equations and panic. Students struggle to transfer mathematical knowledge to chemical situations. Students silo knowledge and find it hard to relate concepts to actual systems. |
When you think of things in terms of energy you can represent energy … energy can be modelled as a particle, as matter. It can be modelled using waves and then trying to talk about how we would use each model as it's appropriate for a particular situation. It's the sort of things we observe might dictate which model we use to explain it, by recognising that in each case there is another model but perhaps just not as useful. So maybe it goes back to just trying to show that everything that we do is a model, every model has its upside and its downside and that we usually only use a model that’s as detailed as it needs to be for the particular concept that you're trying to get across. If you want to get across a concept of a car to someone who has never seen a car you don't probably show them a Ferrari or a drag racing car. Maybe you show them a Lego style block and we do the same thing with our scientific models as well. I guess trying to get across that idea that this is the model that we're going to use but it can be a lot more complicated. I don't want you to think it's as simple as this but it's appropriate under the circumstance. So I guess I spend a lot of time talking about things as models when I'm talking about quantum mechanics. Our treatment in the first year, which is where I cover it, a little bit of second year but I don't take a mathematical detail treatment of quantum mechanics. Someone else does that, so I really bow to them. So most of mine is non-mathematical, just simple mathematics and mainly conceptual type of stuff. I guess some of the things I try and do to illustrate the differences between the models and the way that we use them is to ask questions in class that might be postulated in such a way that you can't answer it if you're thinking about both models at the same time. So the one I like is where I show say a 2s orbital and the probability distribution of that node in between. I talk about things that … there's one briefly, this plum pudding model which they all laugh about. When you look at this 2s model there is a probability and a high probability, relatively so, that the electron can be inside the nucleus, if you think about it in particle terms. Then talk about the nodes and so on and how they arise in quantum mechanics and so on and then ask questions like if the electron can be here and here but it can never be here how does it get there? ... I try and get across maybe the bigger picture, everything we're going to do from this point on (because we do this fairly early in first year) - everything is going to be a model. Nothing is going to be right. Nothing is going to be wrong. Nothing is going to be exactly the way it is. Everything will be just a model. You'll hear us saying things like ‘this is how it is’ or ‘this is what's happening’. But really you need to interpret that as ‘this is a model and this is how this model is used to explain this particular phenomenon. |
|
It’s something that needs to be reinforced, it’s not that you taught it in this unit for three weeks, we are over it. It’s something that keeps coming back, and that you can possibly reintroduce it, with not much change to your teaching. Not every single time, but every now and then remind the students, ‘remember, you still have to think about stoichiometry and limiting reagents’. |
I changed my method of teaching to be a team-based learning approach where in fact as teams they are responsible to each other within the team for their level of engagement or for what they put into that team and if they don’t put in what the team thinks is useful then they get marked on that, their peers mark them on how much they’re contributing to the team’s goals. So rather than me as the educator saying you need to do this and you need to do that, in fact the system is such that as a team they’re responsible for a certain outcome and the team must achieve that outcome and so they need to work together. For the students who don’t put in as much as the team expects of them then there is peer pressure to increase their level of input and their engagement and if the students don’t then the team members get a chance to reflect upon that and give them a sort of team work score. |
|
So my approach to teaching is that I want students to be actively engaged with the material throughout the lectures, all the tutorials, all the workshops or whatever, and so I’m not giving didactic lectures, I’m not using lots of PowerPoint slides. I’m giving them information. I’m describing things to them, but then I give them lots of examples and lots of things to do, lots of activities to do. |
They [students] reveal great misunderstandings about the molecular world. So the difficulties and limitations are as a result of not spending sufficient time on getting them to think about this world, and spending too much time on doing. You know, we’ve got to spend some time, but you can’t spend too much time, I think, on a lot of the ideas that we do teach, and doing calculations and things that, really, no one else does. It’s really something that’s done almost like it’s make-work-type stuff. |
|
It now does come down to the quality of the presentation in terms of what you put on the PowerPoint I suppose, cos we all use PowerPoint. But I try most lectures to switch that off and use the visualiser and write things down by hand, where I can see that something is missing on the PowerPoint, or if I think the students haven’t got a particular message, don’t understand a reaction, don’t know about a mechanism. I’m happy to stop, go to the visualiser and write it down at the correct sort of pace, by which they can actually write it down themselves. |
I have one slide where I'm first demonstrating how we use curly arrows and that shows an arrow going in a particular direction from a nucleophile to an electrophile and emphasising that the arrow shows electrons moving - so it's got to start from where they are. There has to be some electrons there for them to move. So the whole screen goes black and comes up with a little orange box of 'never do this' which is an arrow starting from an H+, which has no electrons. The dramatic emphasis that the whole room goes dark and then it's just up there. |




Unless otherwise noted, content on this site is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License