Expert Insights

The actual curly arrow mechanisms are in a way themselves cartoons, how they map to the reality in the way that a Micky Mouse might map to real life.

When they come in I give a very simple quiz which we do using clickers, the sort of anonymous audience response systems, and I just test a few multiple choice questions, just testing their understanding of some of those terms and then when I notice that there’s, well, anything more than 10 or 15% of students who don’t correctly understand those terms then we go through a process of exploring what those terms are and why they apply to what they apply to and then I retest that a couple of weeks later.... I notice at the end of the year some of the students can lapse back into their old habits, so it’s something that I am going to need to think of continuing to reinforce.

I know it's hard for them to 'suspend reality' and just accept a concept. They grasp for real life examples or metaphors which make sense to them. Students don't like the concept of something that can shift/change. They like one answer which is set and that's it, right or wrong - not 'shifts to the left/right'.

A lot of it is from colleagues.  Conferences are fantastic.  You know, your chemical education conferences.  I do go to a lot of those.

Students from high school might understand that vinegar for example is a weak acid compared to hydrochloric acid, but they never knew why. And you could then show them that with equilibrium, this is why. And all of a sudden they’re, 'oh, I’ve always known that I shouldn’t spill HCL on my hand, but I can spill vinegar on my hand and put it on my fish and chips'... Those sorts of moments can really... the students go ‘oh wow.’

Anonymous

When we’re teaching ideas in chemistry, I liken it to hacking your way through a forest.  It’s all this detail.... and you can’t expect students to do the hard work of fighting your way through the forest or the jungle, unless they have a global view of where they’re going. What I mean by that is, the other factors that influence the way I teach intermolecular forces, is that I keep going back to applications in the real world.  How is it that geckos can crawl up a wall, and almost sit on the ceiling without falling off?  How is it they’re able to stay there with gluey legs or what?  But the interactions between their feet and the ceiling are just, how could they maximise the attractions between the molecules in their feet, and the molecules in the ceiling? So what I’m trying to do all the time is to show applications, powerful, interesting, hopefully, and engaging applications of the ideas that are important. So, for students to engage and to feel, ‘well this is worth hacking my way through the jungle of detail to be able to understand it’, is to zoom out and show them how this topic relates to all of the other topics.  It’s called scaffolding, and it’s a very, very important idea. So, the other factors are essentially the incredible number of other applications of this idea... that the power of an idea is its explanatory power, and when they can see just how important an idea is, in being able to explain all sorts of phenomena, they might be willing to care about it more.

We teach way too much stuff.  We teach way too much stuff that we used to teach because students didn’t have the resources available to them that they’ve got now.  I mean if you look at the resources - they’ve got textbooks, they’ve got electronic media, they’ve got Sapling. They can do the problems in their own time in a guided way with something like Sapling. We don’t have to do it, all we’ve got to do is give them the framework to solve the problems.  And I think we often misunderstand how much we should give them because I think we underestimate the value of letting them solve problems in a guided way with things like Sapling.  And I think, you know, in the old days we’d just do problem after problem after problem, which is as boring as anything.

In the lecture theatre the best strategy there, where you’re confronted by all the constraints of the lecture theatre, is to stop and do stuff with the students, walk around amongst them, see what they’re actually doing... And out of that you might go back and address some aspect of it and revisit it or something like that or you might point them to some tools to use to work out some other aspect.  So in the lecture theatre it’s very much for me a case of stopping and going and seeing what they’re doing and if you don’t then clearly you don’t know. 

The concept of a continuum is, I think, really important in chemistry and… what I see is that students come up with this issue of things being black or white.  They struggle with this concept of the in between stuff.

So I think we just, I used to give them, perhaps, 10 minutes to work on a problem, now I probably only give them two or three minutes.  I find that concentrates them and prevents them just talking about the State of Origin or whatever it is that’s on their mind.  We just need to keep changing the activity, rather than have extended activities... we want them to chat, but I think human beings won’t sit and chat about quantum mechanics for more than two or three minutes, they’ll get onto what they want for lunch.  So it’s that balance.

Pages