Expert Insights

They [students] expect to either succeed or fail immediately or very quickly on particular problems. They do not see the process as a learning process.

Difficulties are having to relearn something that they thought was true from school and not understanding the evolving nature of science. New knowledge is easier to assimilate than changing old knowledge.

So into the lectures I put kind of ad breaks, I suppose, short 'meet the scientist' breaks.  So we would have a photograph and fun facts about a scientist and various places we would have a stop, and I have told them that all of that information wasn't on the exam, so they knew that they could stop and just take a breather and then pick back up on the chemistry afterwards.  So that, I think helped, especially the ones that were just finding it all a bit kind of overwhelming. 

So I think we just, I used to give them, perhaps, 10 minutes to work on a problem, now I probably only give them two or three minutes.  I find that concentrates them and prevents them just talking about the State of Origin or whatever it is that’s on their mind.  We just need to keep changing the activity, rather than have extended activities... we want them to chat, but I think human beings won’t sit and chat about quantum mechanics for more than two or three minutes, they’ll get onto what they want for lunch.  So it’s that balance.

Students should [only] be limited by students' curiosity.

The concept of a continuum is, I think, really important in chemistry and… what I see is that students come up with this issue of things being black or white.  They struggle with this concept of the in between stuff.

Students from high school might understand that vinegar for example is a weak acid compared to hydrochloric acid, but they never knew why. And you could then show them that with equilibrium, this is why. And all of a sudden they’re, 'oh, I’ve always known that I shouldn’t spill HCL on my hand, but I can spill vinegar on my hand and put it on my fish and chips'... Those sorts of moments can really... the students go ‘oh wow.’

Anonymous

I like to approach chemistry as a different language, because it used symbols to convey ideas across, but they are not the reality.  When we draw a little stick structure, alcohol does not exist as I’ve just drawn it, it’s a representation.

So, it’s helping to bed down analysis, problem solving, doing the sort of detective work to get to an answer.  And the students also seem to quite enjoy having material presented to them in that way - here’s a spectrum, what do you think the structure is, because it’s a more active form of learning as well.  So I find I enjoy teaching it, and they respond well in terms of, they keep coming in and asking me for additional problems to practise on which is clearly evidence that they feel it’s challenging them.

I changed my method of teaching to be a team-based learning approach where in fact as teams they are responsible to each other within the team for their level of engagement or for what they put into that team and if they don’t put in what the team thinks is useful then they get marked on that, their peers mark them on how much they’re contributing to the team’s goals.  So rather than me as the educator saying you need to do this and you need to do that, in fact the system is such that as a team they’re responsible for a certain outcome and the team must achieve that outcome and so they need to work together.  For the students who don’t put in as much as the team expects of them then there is peer pressure to increase their level of input and their engagement and if the students don’t then the team members get a chance to reflect upon that and give them a sort of team work score.

Pages