Expert Insights

They [students] expect to either succeed or fail immediately or very quickly on particular problems. They do not see the process as a learning process.

It was a revelation to me in second year when [one of the top professors] said to me, "Buy a model kit." And so now I tell all my students.

So the first thing that I really stress that people do, is that they actually go and watch some classes.  I think that’s the most important thing.  When they’re coming straight out of a post doc, or they’re coming straight out of the Research Centre, and then, they’re told they’re going to be lecturing 300 first year students, they’ve got to go and sit in the back of the lecture theatres for a few weeks.... when I came over from the UK to here, and the class sizes are about three or four times as big, it was just a real help to be able to see what worked and didn’t work  – how little time the students were on task in quite a few lectures.  Where the lecturer would just be talking and be oblivious to this.  I think people just learn a lot by seeing good things, but they also learn a lot by seeing quite bad things going on.

This understanding builds students' knowledge about the basic structure of matter which stimulates them to think in sub-microscopic level that provides the fundamental understanding for further chemistry learning.

It now does come down to the quality of the presentation in terms of what you put on the PowerPoint I suppose, cos we all use PowerPoint.  But I try most lectures to switch that off and use the visualiser and write things down by hand, where I can see that something is missing on the PowerPoint, or if I think the students haven’t got a particular message, don’t understand a reaction, don’t know about a mechanism. I’m happy to stop, go to the visualiser and write it down at the correct sort of pace, by which they can actually write it down themselves.

Students see equations and panic. Students struggle to transfer mathematical knowledge to chemical situations. Students silo knowledge and find it hard to relate concepts to actual systems.

And it’s so essential, if you are in the middle of a discipline, to have a really well developed sense of what your colleagues around you are teaching, so that you can make connections.

It’s something that needs to be reinforced, it’s not that you taught it in this unit for three weeks, we are over it. It’s something that keeps coming back, and that you can possibly reintroduce it, with not much change to your teaching. Not every single time, but every now and then remind the students, ‘remember, you still have to think about stoichiometry and limiting reagents’.

I find it [teaching] enjoyable, and I think that if you’re enjoying teaching something then your passion and desire and enjoyment gets transmitted to the students.  It’s not necessarily easy to teach, but it’s satisfying and generally we want to inspire them to increase their level of intrinsic motivation to want to continue to study chemistry.

I remember when I was taught this, that the only definition we were given was Le Chatelier’s actual definition, or his principle, and I remember reading that language and going geez, that’s really hard to follow as a student, so I used to always try and present that and then break it down in to a more simple sort of version that I thought would be easier to understand.

Pages