I guess what every educator deals with is needing to find out what preconceptions there are at the start of the unit and then correct those and then keep on top of those throughout the course. For example I get students who use the word particle and the word droplet interchangeably. Whereas to an expert, a particle is something that is made of a solid material and a droplet is something that’s a liquid material. Students use those interchangeably so they may be talking about a suspension of solid materials but then they use the word droplet because they think it’s interchangeable with the word particle. Or vice versa, they might be talking about an emulsion and they talk about particles where they should be talking about droplets. So because they’ve heard these phrases before in first year... the importance of using exactly correct terminology hasn’t been reinforced.
Expert Insights
|
In the lab it comes out in a variety of ways. It comes out most commonly when the student gets to actually start doing their calculations and you ask them to relate that back to what they’ve actually physically measured. And when they start doing those sorts of things you realise there’s a bit of a misplaced idea here or a misconception that you can deal with there. |
So I think we just, I used to give them, perhaps, 10 minutes to work on a problem, now I probably only give them two or three minutes. I find that concentrates them and prevents them just talking about the State of Origin or whatever it is that’s on their mind. We just need to keep changing the activity, rather than have extended activities... we want them to chat, but I think human beings won’t sit and chat about quantum mechanics for more than two or three minutes, they’ll get onto what they want for lunch. So it’s that balance. |
So, just to make them do some work, and made them think about the ideas themselves. Talk amongst themselves about it. I think that just too much of me in the lecture just washes over them after five to 10 minutes. So they just need to have a break, think about the problem, do a couple of problems, talk amongst themselves... that seems to help, with both the variety of students in the class, but also just keeping them engaged. Keeping their attention. |
They [students] reveal great misunderstandings about the molecular world. So the difficulties and limitations are as a result of not spending sufficient time on getting them to think about this world, and spending too much time on doing. You know, we’ve got to spend some time, but you can’t spend too much time, I think, on a lot of the ideas that we do teach, and doing calculations and things that, really, no one else does. It’s really something that’s done almost like it’s make-work-type stuff. |
Students see equations and panic. Students struggle to transfer mathematical knowledge to chemical situations. Students silo knowledge and find it hard to relate concepts to actual systems. |
So my approach to teaching is that I want students to be actively engaged with the material throughout the lectures, all the tutorials, all the workshops or whatever, and so I’m not giving didactic lectures, I’m not using lots of PowerPoint slides. I’m giving them information. I’m describing things to them, but then I give them lots of examples and lots of things to do, lots of activities to do. |
So the first thing that I really stress that people do, is that they actually go and watch some classes. I think that’s the most important thing. When they’re coming straight out of a post doc, or they’re coming straight out of the Research Centre, and then, they’re told they’re going to be lecturing 300 first year students, they’ve got to go and sit in the back of the lecture theatres for a few weeks.... when I came over from the UK to here, and the class sizes are about three or four times as big, it was just a real help to be able to see what worked and didn’t work – how little time the students were on task in quite a few lectures. Where the lecturer would just be talking and be oblivious to this. I think people just learn a lot by seeing good things, but they also learn a lot by seeing quite bad things going on. |
A lot of it is from colleagues. Conferences are fantastic. You know, your chemical education conferences. I do go to a lot of those. |
But if you’re honest, they’ll be honest right. And I think that’s really important. If you b*gger something up and you really do make a blue or even a little blue, tell them. Say ‘oh look this was wrong, you know this is what it should be’. So that’s important - to be honest, to be upfront. Recognise that we’re dealing, in 2015 or 2014, we’re dealing with OP1 to maybe 14. Recognise the breadth of that class. Don’t teach the top, don’t teach the bottom, teach somewhere in the middle, but try to make sure that you don’t lose the top ones and lose the bottom ones, which is very difficult to do and you only do it with experience. |