So, it’s helping to bed down analysis, problem solving, doing the sort of detective work to get to an answer. And the students also seem to quite enjoy having material presented to them in that way - here’s a spectrum, what do you think the structure is, because it’s a more active form of learning as well. So I find I enjoy teaching it, and they respond well in terms of, they keep coming in and asking me for additional problems to practise on which is clearly evidence that they feel it’s challenging them.
Expert Insights
|
|
When we’re teaching ideas in chemistry, I liken it to hacking your way through a forest. It’s all this detail.... and you can’t expect students to do the hard work of fighting your way through the forest or the jungle, unless they have a global view of where they’re going. What I mean by that is, the other factors that influence the way I teach intermolecular forces, is that I keep going back to applications in the real world. How is it that geckos can crawl up a wall, and almost sit on the ceiling without falling off? How is it they’re able to stay there with gluey legs or what? But the interactions between their feet and the ceiling are just, how could they maximise the attractions between the molecules in their feet, and the molecules in the ceiling? So what I’m trying to do all the time is to show applications, powerful, interesting, hopefully, and engaging applications of the ideas that are important. So, for students to engage and to feel, ‘well this is worth hacking my way through the jungle of detail to be able to understand it’, is to zoom out and show them how this topic relates to all of the other topics. It’s called scaffolding, and it’s a very, very important idea. So, the other factors are essentially the incredible number of other applications of this idea... that the power of an idea is its explanatory power, and when they can see just how important an idea is, in being able to explain all sorts of phenomena, they might be willing to care about it more. |
|
And it’s so essential, if you are in the middle of a discipline, to have a really well developed sense of what your colleagues around you are teaching, so that you can make connections. |
I started lecturing before I did my Diploma of Education and I would have recommended to all of the lecturers to do it because it really helped me in my teaching. Mind you, I already had a bit of experience, I don’t know, you know, the chicken or the egg type thing. |
|
This understanding builds students' knowledge about the basic structure of matter which stimulates them to think in sub-microscopic level that provides the fundamental understanding for further chemistry learning. |
We do an awful lot of focus on teaching but realisticly, authentic assessment that actually engages the student, that’s a tougher ask... I set a lot of essay type assignments. I think we ought to do more of that in science. But when I started doing this I used to get very poor results and it’s taken me a little while to realise that the students weren’t understanding what the questions was. They didn’t understand what I meant by compare and contrast or discuss or argue for this. So increasingly now I use workshops to actually spend time with the students unpacking, what is this essay assignment about? What am I actually asking you to do? What do you need to think about? And not assuming that they know how to write an essay. |
|
It’s something that needs to be reinforced, it’s not that you taught it in this unit for three weeks, we are over it. It’s something that keeps coming back, and that you can possibly reintroduce it, with not much change to your teaching. Not every single time, but every now and then remind the students, ‘remember, you still have to think about stoichiometry and limiting reagents’. |
It is vitally important for their understanding of chemistry that they understand that molecules are three-dimensional things and that they have a spatial requirement in that they have a shape of their own and that shape will change. They can't do higher level manipulations without an understanding of three-dimensional nature of molecules. |
|
I think what I try to get students to see is that we use models and you use a model, while it works. Then when it doesn’t work you develop a more sophisticated model, and what we’re doing now is developing a more sophisticated model of the structure of the atom, of bonding between atoms. So they find that difficult, the fact that you’re putting aside the model you used previously and developing a more sophisticated one. I think that’s something, it just knocks their confidence a bit. I think we’ve got to convince them that, actually, what your teachers told you at school wasn't wrong, it’s just that this is more sophisticated, that science is all about building models to explain reality. |
I was thinking about Le Chatelier’s principle and how that’s quite cumbersome in its wording, and so when I teach it, and how I always break that down into language that’s probably easier for students to understand, and Bob tells me that’s called repackaging, and I sort of thought that through all my teaching I do a fair bit of repackaging, a lot of the time, so I guess that was just a trait that I use and has been pretty successful for me, I think. |




Unless otherwise noted, content on this site is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License