Expert Insights

We teach way too much stuff.  We teach way too much stuff that we used to teach because students didn’t have the resources available to them that they’ve got now.  I mean if you look at the resources - they’ve got textbooks, they’ve got electronic media, they’ve got Sapling. They can do the problems in their own time in a guided way with something like Sapling. We don’t have to do it, all we’ve got to do is give them the framework to solve the problems.  And I think we often misunderstand how much we should give them because I think we underestimate the value of letting them solve problems in a guided way with things like Sapling.  And I think, you know, in the old days we’d just do problem after problem after problem, which is as boring as anything.

So, it’s helping to bed down analysis, problem solving, doing the sort of detective work to get to an answer.  And the students also seem to quite enjoy having material presented to them in that way - here’s a spectrum, what do you think the structure is, because it’s a more active form of learning as well.  So I find I enjoy teaching it, and they respond well in terms of, they keep coming in and asking me for additional problems to practise on which is clearly evidence that they feel it’s challenging them.

We all spend a certain amount of our class time going through definitions and jargon and getting students up to speed with the basic area and now that’s material which I take out of the class and put online and let students read and understand that in their own time before they come to the class.

I think what I try to get students to see is that we use models and you use a model, while it works. Then when it doesn’t work you develop a more sophisticated model, and what we’re doing now is developing a more sophisticated model of the structure of the atom, of bonding between atoms. So they find that difficult, the fact that you’re putting aside the model you used previously and developing a more sophisticated one. I think that’s something, it just knocks their confidence a bit. I think we’ve got to convince them that, actually, what your teachers told you at school wasn't wrong, it’s just that this is more sophisticated, that science is all about building models to explain reality.

I find that some students pick up what the mole concept is from the idea of grouping numbers of things that are every day size. 

So into the lectures I put kind of ad breaks, I suppose, short 'meet the scientist' breaks.  So we would have a photograph and fun facts about a scientist and various places we would have a stop, and I have told them that all of that information wasn't on the exam, so they knew that they could stop and just take a breather and then pick back up on the chemistry afterwards.  So that, I think helped, especially the ones that were just finding it all a bit kind of overwhelming. 

So, just to make them do some work, and made them think about the ideas themselves.  Talk amongst themselves about it.  I think that just too much of me in the lecture just washes over them after five to 10 minutes.  So they just need to have a break, think about the problem, do a couple of problems, talk amongst themselves... that seems to help, with both the variety of students in the class, but also just keeping them engaged.  Keeping their attention.

In the workshops, the workshop idea as we run them is that you are out and about and amongst the students all the time in those groups, seeing what’s going on in the groups, seeing how they’re answering their questions.  They have set questions on sheets that they work through in groups and the groups of three just get one set.  They’re all working on them together and you’re moving in and out and around among the groups and seeing how they’re going.  In that circumstance you can quickly, having looked at three or four of your eight different groups, figure out where a particular issue would be and then that can be addressed on the board, it can be addressed with models or something like that.

Students from high school might understand that vinegar for example is a weak acid compared to hydrochloric acid, but they never knew why. And you could then show them that with equilibrium, this is why. And all of a sudden they’re, 'oh, I’ve always known that I shouldn’t spill HCL on my hand, but I can spill vinegar on my hand and put it on my fish and chips'... Those sorts of moments can really... the students go ‘oh wow.’

Anonymous

When we’re teaching ideas in chemistry, I liken it to hacking your way through a forest.  It’s all this detail.... and you can’t expect students to do the hard work of fighting your way through the forest or the jungle, unless they have a global view of where they’re going. What I mean by that is, the other factors that influence the way I teach intermolecular forces, is that I keep going back to applications in the real world.  How is it that geckos can crawl up a wall, and almost sit on the ceiling without falling off?  How is it they’re able to stay there with gluey legs or what?  But the interactions between their feet and the ceiling are just, how could they maximise the attractions between the molecules in their feet, and the molecules in the ceiling? So what I’m trying to do all the time is to show applications, powerful, interesting, hopefully, and engaging applications of the ideas that are important. So, for students to engage and to feel, ‘well this is worth hacking my way through the jungle of detail to be able to understand it’, is to zoom out and show them how this topic relates to all of the other topics.  It’s called scaffolding, and it’s a very, very important idea. So, the other factors are essentially the incredible number of other applications of this idea... that the power of an idea is its explanatory power, and when they can see just how important an idea is, in being able to explain all sorts of phenomena, they might be willing to care about it more.

Pages