It always seems like we're starting from further behind than a lot of the other sciences are because they seem to know less about chemistry when they get here. If I say ‘think of a famous physicist’ you probably already have thought of three. Then you could go outside and ask someone to think of a famous physicist and they'd probably think of at least one of the same ones. You do the same thing with biologists. If I say to think of a famous chemist … that's within chemistry circles, we can't do it. We can name one but you know if you go out there and say, ‘Who is this person?’ they've got no idea. So for some reason … we've never … chemists have never been able to popularise our topic, our content. We've never been able to make it exciting enough that someone who is not studying it still wants to know about it. And so I do think we've got a bigger challenge, for whatever reason. Maybe there's something about chemistry that makes it less enjoyable, I don’t know. There's definitely been an ongoing issue for us that it's not … people just don't know anything about it... Most people know Einstein's theory of relativity. You don't see that really in everyday, go, "There's the theory of relativity at work." Newton's Law, sure, you see those and you … but, yeah, everybody knows Einstein. And a lot of … I'll call them lay people, I don't like the term, but non-science people, could probably give you a hand wave explanation of what the theory of relativity is about, which is a pretty abstract thing. I mean, if we think of the equivalent types of things in chemistry that are that abstract, nobody has a clue. We teach them in third year to the remaining hard core people that are left.
Expert Insights
|
|
They struggle with the language of chemistry. So we sort of need to teach them the process and how to work out how to do these things. We know that their tendency is just to attempt to memorise reactions. Whereas if we can teach them to derive … find out what the nucleophile and the electrophile is then all they have to do is draw a curly arrow from the nucleophile to the electrophile, rather than trying to work out what the reaction is itself. |
|
The actual curly arrow mechanisms are in a way themselves cartoons, how they map to the reality in the way that a Micky Mouse might map to real life. |
I want them to get the big picture about what analytical chemistry is about in terms of solving an analytical chemistry problem. They need to know the big picture rather than just focussing on the measurement step. |
|
So into the lectures I put kind of ad breaks, I suppose, short 'meet the scientist' breaks. So we would have a photograph and fun facts about a scientist and various places we would have a stop, and I have told them that all of that information wasn't on the exam, so they knew that they could stop and just take a breather and then pick back up on the chemistry afterwards. So that, I think helped, especially the ones that were just finding it all a bit kind of overwhelming. |
So you shouldn’t be rigid, you shouldn’t be rigid in what you’re going to do. It’s always stunned me that people say you should know where you start a lecture and where you’re going to finish, and if you get to that point and you finish ten minutes early you then should just finish. I’ve never worked on that principle. I never know where I’m going to start because I never know where I’m going to finish, right. So where I finished the lecture before is where I start the next day, I haven’t got a set content. If a student asks me an interesting question and I get the feeling that they want to know that answer I’ll go off for five or ten minutes or three or four minutes answering it, and if I don’t get to the end of where I thought I was going to get to, too bad I’ll do it next time. So you go with the flow, you don’t go with a rigid thing ‘I’ve got to get through these 15 slides today and if I don’t the world will end,’ because it won’t. |
|
We teach way too much stuff. We teach way too much stuff that we used to teach because students didn’t have the resources available to them that they’ve got now. I mean if you look at the resources - they’ve got textbooks, they’ve got electronic media, they’ve got Sapling. They can do the problems in their own time in a guided way with something like Sapling. We don’t have to do it, all we’ve got to do is give them the framework to solve the problems. And I think we often misunderstand how much we should give them because I think we underestimate the value of letting them solve problems in a guided way with things like Sapling. And I think, you know, in the old days we’d just do problem after problem after problem, which is as boring as anything. |
So the first thing that I really stress that people do, is that they actually go and watch some classes. I think that’s the most important thing. When they’re coming straight out of a post doc, or they’re coming straight out of the Research Centre, and then, they’re told they’re going to be lecturing 300 first year students, they’ve got to go and sit in the back of the lecture theatres for a few weeks.... when I came over from the UK to here, and the class sizes are about three or four times as big, it was just a real help to be able to see what worked and didn’t work – how little time the students were on task in quite a few lectures. Where the lecturer would just be talking and be oblivious to this. I think people just learn a lot by seeing good things, but they also learn a lot by seeing quite bad things going on. |
|
I was thinking about Le Chatelier’s principle and how that’s quite cumbersome in its wording, and so when I teach it, and how I always break that down into language that’s probably easier for students to understand, and Bob tells me that’s called repackaging, and I sort of thought that through all my teaching I do a fair bit of repackaging, a lot of the time, so I guess that was just a trait that I use and has been pretty successful for me, I think. |
This understanding builds students' knowledge about the basic structure of matter which stimulates them to think in sub-microscopic level that provides the fundamental understanding for further chemistry learning. |




Unless otherwise noted, content on this site is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License