Expert Insights

We all spend a certain amount of our class time going through definitions and jargon and getting students up to speed with the basic area and now that’s material which I take out of the class and put online and let students read and understand that in their own time before they come to the class.

But if you’re honest, they’ll be honest right.  And I think that’s really important. If you b*gger something up and you really do make a blue or even a little blue, tell them.  Say ‘oh look this was wrong, you know this is what it should be’.  So that’s important - to be honest, to be upfront.  Recognise that we’re dealing, in 2015 or 2014, we’re dealing with OP1 to maybe 14. Recognise the breadth of that class. Don’t teach the top, don’t teach the bottom, teach somewhere in the middle, but try to make sure that you don’t lose the top ones and lose the bottom ones, which is very difficult to do and you only do it with experience.

They [students] reveal great misunderstandings about the molecular world. So the difficulties and limitations are as a result of not spending sufficient time on getting them to think about this world, and spending too much time on doing. You know, we’ve got to spend some time, but you can’t spend too much time, I think, on a lot of the ideas that we do teach, and doing calculations and things that, really, no one else does. It’s really something that’s done almost like it’s make-work-type stuff.

[Analytical chemistry] is probably one of the things that’s easiest to tie back to their own experiences.  Because it’s very easy to link the idea of the importance of chemical measurement, is actually pretty easy to get across. You just talk about what is sports drug testing, road side testing, when was the last time you went to the doctor to get a path test.  These are all forms of analytical chemistry.  So I have a significant advantage over some people [teaching other topics] in being able to imbed it in their experiences.  Everybody has some kind of experience we can draw on to say, yeah that’s analytical chemistry.  The difficulty is of course to ensure that misconceptions don’t creep in.

I don’t like to be in a position where I’m stood at the front talking for 50 minutes. I like to be a in a position where I’m engaging with students, where they’re engaging with each other, where there’s a buzz, where there’s things happening, and it’s an active environment.

The big picture is that in any topic there’re key principles, and if you as a lecturer can get across the key principles, that then sets them up to solve problems and to think about the other principles and how they connect.  But if they don’t, if they’re not prepared to accept the fact that there are these key principles you need to understand then it’s not going to work.

This understanding builds students' knowledge about the basic structure of matter which stimulates them to think in sub-microscopic level that provides the fundamental understanding for further chemistry learning.

You're learning a new language as well as new concepts. There's lots of vocab, so terms like electrophile and nucleophile and many others. So learning the language, learning the code that we use, the curly arrow code, and then starting to apply that in half a dozen or a dozen or so different contexts, different reactions.

I use a lot of eye contact. The people in the back row are not anonymous, you know.  Make sure you’re talking to them and make sure that you see them.

I think to get the students to straight away mark for somebody else what they’ve just done and then to mark or take part in the marking of two other versions of the same thing is really powerful.  So it’s not so much me directly finding out what they do and don’t understand but using methods by which they can diagnose for themselves.  I haven’t got this, she has, or yep I have got most of that, she hasn’t, and I can see where she went wrong.  Very powerful, very powerful indeed. 

Pages